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Abstract

The Atari 2600 video game console provides an environment for investigating the ability to build artificial agent
behaviours for a variety of games using a common interface. Such a task has received attention for addressing
issues such as: 1) operation directly from a high-dimensional game screen; and 2) partial observability of state.
However, a general theme has been to assume a common machine learning algorithm, but completely retrain
the model for each game title. Success in this respect implies that agent behaviours can be identified without
hand crafting game specific attributes/actions. This work advances current state-of-the-art by evolving solutions
to play multiple titles from the same run. We demonstrate that in evolving solutions to multiple game titles,
agent behaviours for an individual game as well as single agents capable of playing all games emerge from the
same evolutionary run. Moreover, the computational cost is no more than that used for building solutions for a
single title. Finally, while generally matching the skill level of controllers from neuro-evolution/deep learning,
the genetic programming solutions evolved here are several orders of magnitude simpler, resulting in real-time
operation at a fraction of the cost.

1 Introduction

Machine learning (ML) for defining artificial agent behaviours, or policies, represents one of the longest standing
themes regarding the application of AI to games. As such, Yannakakis and Togelius identify six general contribu-
tions [22], including the following three of particular relevance to this work: 1) Games as AI benchmarks recognizes
that games increasingly represent an environment characterized by high dimensional spatial-temporal informa-
tion. Moreover, the environments are often non-stationary and subject to partial observability. Thus, games
represent a particularly rich combination of challenges for ML in general; 2) Believable agent behaviours implies that
agent decision making should be plausible. It is increasingly unacceptable to rely on cheats or global information.
Moreover, agents need to be ‘proficient’ in order to be believable. The more proficient/believable a behaviour, the
more immersive a gaming experience potentially is; 3) General game AI recognizes the role of games in develop-
ing artificial general intelligence, i.e. algorithms capable of demonstrating human levels of intelligent behaviour.
Indeed, a game based formulation of the Turing test has been proposed in which the play of artificial agents are
compared to that of humans [7].

In particular, agent behaviours are increasingly being developed that are able to interact directly from game
content as experienced by a human player, as opposed to requiring hand crafted features to be defined a priori.
This potentially brings artificial behaviours closer to that of a human player, or less dependent on tricks-of-the-
trade. With the above points in mind, a growing body of research has been employing a suite of Atari 2600 video
game titles in which to demonstrate domain-independent reinforcement learning (e.g. [15, 1, 5, 21, 16]). In each
case, the focus has been on developing game-specific agents.

In this work, we investigate the capacity to support Multi-Task Reinforcement Learning (MTRL) in the Atari
environment. Thus, an agent is developed for multiple game titles simultaneously, with no prior knowledge
regarding how individual games may relate to one another, if at all. The Atari 2600 environment represents
an interesting test domain because each game is unique and designed to be challenging for human players.
Furthermore, artificial agents experience game-play just as a human would, via the a high-dimensional game
screen and Atari joystick. We propose a Genetic Programming (GP) framework to address high-dimensional MTRL
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through emergent modularity [17]. Specifically, a bottom-up process is assumed in which multiple programs self-
organize into collective decision-making entities, or teams, which then further develop into multi-team policy
graphs, or Tangled Program Graphs (TPG). The TPG framework learns to play three Atari games simultaneously,
producing a single control policy that matches or exceeds leading results from (game-specific) deep reinforcement
learning (DQN) [15] in each game. Furthermore, unlike the representation assumed for deep learning, TPG
policies start simple and adaptively complexify through interaction with task environment, resulting in agents
that are exceedingly simple, operating in real-time without specialized hardware support such as GPUs.

2 Background

With regard to constructing agent behaviours for video games through machine learning, the concept of general-
ization has been studied primarily from three related but unique perspectives:

Domain-Independent AI is concerned with developing learning algorithms that can be applied to a variety of task
domains with minimal prior knowledge and no task-dependent parameter tuning. To date, this has been the focus
of studies in the Atari 2600 environment, where several approaches have demonstrated an ability to build policies
for multiple games using the same learning framework [15, 1, 5, 21, 16]. In these works, a game-specific policy is
developed from scratch for each game title. However, task transfer has also been employed in the Atari task [3],
in which case the agent reuses experience gained in one or more source game titles to improve learning under a
single target title. The Term ‘General Video Game Playing’ is often used when describing Domain-Independent
AI. However, there is an important distinction between these terms which we acknowledge below.

General Video Game Playing is concerned with building agents that are capable of playing multiple games which
they have never seen before [19, 12]. That is, no off-line experience / training with a specific game environment
takes place prior to evaluation on that game. Thus, while learning is possible during gameplay, a prior level of
general game-playing competence is required.

Multi-Task Learning is concerned with discovering agent behaviours for multiple tasks simultaneously [20, 18],
resulting in multiple game-specific policies and/or a single policy that is capable of playing multiple game titles
at a high skill level. Multi-task learning is the primary focus of this work.

The approach taken in this work, Tangled Program Graphs (TPG), is an extension of the well-established
Symbiotic Bid-Based (SBB) algorithm [13] for evolving teams of programs. SBB has been shown to build strong
policies for a variety of reinforcement learning tasks [4, 11, 14, 8, 9], owing primarily to two key innovations: 1)
Solutions are represented by a team of programs, in which each program defines a context for deploying a single
action, and a bidding process determines the particular action to associate with each state observation [13]. The
number and complement of programs per team, as well as the bidding behaviour of each program, are evolved
properties; 2) Hierarchical decision making agents may be constructed over two independent phases of evolution,
where the first phase produces a library of diverse, specialist teams and the second phase attempts to build more
general policies by reusing the library. The result was a policy tree.

The work described here takes a more open-ended approach to organizing teams of programs into graphs as
opposed to trees; hereafter Tangled Program Graphs (TPG). Specifically, each node of a policy tree is defined by
a team, and each ‘path’ through the tree (of teams) is of equal depth. Thus, a team at the root describes a policy
through a path defined in terms of teams at all prior levels of the tree. Unfortunately, as the tree depth increases it
becomes increasingly difficult to disambiguate the relation between state and action, as new teams have to operate
‘through’ all previous policy levels. If teams could instead be inter-related through a graph structure, the potential
to retain clarity between state and action would be retained. This is the underlying purpose of TPG.

3 Arcade learning Environment

Released in 1977, the Atari 2600 was a popular home video game console that supported hundreds of game
titles. The Arcade Learning Environment (ALE) provides an Atari 2600 emulator with an interface geared towards
benchmarking domain-independent AI algorithms [1]. Specifically, a game playing agent can interact with games
by observing the game screen (210 x 160 pixel matrix with 128 possible colours for each pixel), and responding
with 18 discrete actions defined by the Atari joystick (all possible combinations of paddle direction and fire button
state, including ‘no action’). Due to hardware limitations in the original console, game entities often appear
intermittently over sequential frames, causing visible flicker. As such, Atari game environments are considered
partially observable, since it is often impossible to observe the complete state of play from a single screen frame.
In common with previous work in the ALE, agents in this study stochastically skip screen frames with probability
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(a) Atari Screen (b) Decimal Feature Grid

Figure 1: Screen quantization steps, reducing the raw Atari pixel matrix (a) to 1344 decimal sensor inputs (b).

p = 0.25, with the previous action being repeated on skipped frames [1, 15]. This is a default setting in ALE,
and aims to: 1) limit artificial agents to roughly the same reaction time as a human player; and 2) introduce
stochasticity into the environment [6]. A single episode of play lasts a maximum of 18, 000 frames, not including
skipped frames.

3.1 Image Preprocessing

Atari screen frames have a lot of redundant information. That is, visual game content is designed for maximizing
entertainment, as opposed to simply conveying state,~s(t), information. As such, we adopt a quantization approach
to preprocessing. The following 2-step procedure is applied to every game frame:

Frame grid: The frame is subdivided into a 42 × 32 grid, in which only 50% of the pixels in each tile are
considered and each pixel assumes an 8-colour SECAM encoding. The SECAM 8-colour encoding is provided by
ALE as an alternative to the default NSTC 128-colour format. Encoding: Each tile is described by a single byte, in
which each bit encodes the presence of one of eight SECAM colours within that tile. The final sensory state space
is constructed from the decimal value of each tile byte, or~s(t) of 42× 32 = 1, 344 decimal features in the range of
0− 255, visualized in Figure 1(b) for the game Zaxxon at time step (frame) t.

This state representation is inspired by the Basic method defined in [1]. Note, however, that this method
does not use a priori background detection or pairwise combinations of features. That is, no feature extraction is
performed as part of the preprocessing step, just a quantization of the original frame data. Each TPG program
then learns to sample a potentially unique subset of inputs from~s(t) for incorporating into their decision making
process. The emergent properties of TPG are then required to develop the complexity of a solution, or policy graph,
with programs organized into teams and teams into graphs. Thus, the specific subset of sensor inputs sampled
within each TPG policy is an emergent property, discovered through interaction with the task environment alone.
The implications of this adapted sensor efficiency on computational cost for TPG will be revisited in Section 5.3.

4 Evolving Tangled Program Graphs

4.1 Teams of Programs

A single team of programs represents the simplest stand-alone decision-making entity in the TPG framework.
A linear program representation is assumed (See Algorithm 1), where such a representation facilitates skipping
‘intron’ code, which can potentially represent 60− 70% of program instructions [2]. Each program defines the
context for one discrete action (e.g. Atari joystick position), where actions are assigned to the program at initial-
ization and potentially modified by variation operators during evolution. In order to map a state observation to
an action, each program in the team will execute relative to the current state,~s(t), and return a single real valued
‘bid’, i.e. the content of register R[0] after execution. The team then chooses the action of the program with the
highest bid. If programs were not organized into teams, in which case all programs within the same population
would compete for the right to suggest their action, it is very likely that degenerate individuals (programs that
bid high for every state), would disrupt otherwise effective bidding strategies.



Appears in GECCO’17 under ACM copyright 4

Algorithm 1 Example program in which execution is sequential. Programs may include two-argument instructions
of the form R[x] ← R[x] ◦ R[y] in which ◦ ∈ +,−, x,÷; single-argument instructions of the form R[x] ← ◦(R[y])
in which ◦ ∈ cos, ln, exp; and a conditional statement of the the form IF (R[x] < R[y]) THEN R[x] ← −R[x]. R[x]
is a reference to an internal register, while R[y] may reference internal registers or state variables (sensor inputs).
Determining which of the available sensor inputs are actually used in the program, as well as the number of
instructions and their operations, are both emergent properties of the evolutionary process.

1. R[0]← R[0]− R[3]

2. R[1]← R[0]÷ R[7]

3. R[1]← Log(R[1])

4. IF (R[0] < R[1]) THEN R[0]← −R[0]

5. RETURN R[0]

Adaptively building teams of programs is addressed here through the use of a symbiotic relation between a
team population and a program population, or Symbiotic Bid-Based GP (SBB) [13]. Each individual of the team
population represents an index to some subset of the program population (See Figure 2(a)). Team individuals
therefore assume a variable length representation in which each individual is stochastically initialized with [2, ..., ω]
pointers to programs from the program population. Furthermore, the team initialization process ensures there are
at least two different actions indexed by the complement of programs within the same team. The same program
may appear in multiple teams, but must appear in at least one team to survive between consecutive generations.

Performance (i.e. fitness) is only expressed at the level of teams, and takes the form of the task dependent
objective (e.g. Atari game score). After evaluating the performance of all teams, the worst PopGap teams are
deleted from the team population. Moreover, any program that fails to be indexed by any team (following team
deletion) must have been associated with the worst performing teams, hence is also deleted. This avoids the need
to make arbitrary decisions regarding the definition of fitness at the program level. New teams are introduced
by sampling, cloning, and modifying PopGap surviving teams. Naturally, if there is a performance benefit in
smaller/larger teams and/or different program complements, this will be reflected in the surviving team–program
complements [13], i.e. team–program complexity is a developmental trait.

4.2 Policy Graphs

Programs are initialized with atomic actions defined by the task environment (i.e. Joystick positions, Figure
2(a)). In order to enable the evolution of hierarchically organized code under a completely open ended process
of evolution (i.e. emergent modularity [17]), program variation operators are allowed to introduce actions that
index other teams within the team population. When a program’s action is modified, it has an equal probability
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Figure 2: Illustration of the relation between team and program populations at initialization (a) and during evolu-
tion as arbitrarily deep/wide tangled program graphs emerge (b).
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of referencing either an atomic action or another team. Thus, variation operators have the ability to incrementally
construct multi-team policy graphs (Figure 2(b)). Each vertex in the graph is a team, while each team member, or
program, represents one outgoing edge leading either to another team or an atomic action. Naturally, decision-
making in a policy graph begins at the root team (e.g. t3 in Figure 2(b)), where each program in the team will
produce one bid relative to the current state observation. Graph traversal then follows the program / edge with
the largest bid, repeating the bidding process for the same state, ~s(t), at every team / vertex along the path until
an atomic action is reached. Thus, in sequential decision making tasks, the policy graph computes one path from
root to action at every time step, where only a subset of programs in the graph (i.e those in teams along the path)
require execution. Algorithm 2 details the process for evaluating the TPG policy graph, which is repeated at every
time step until an end-of-game state is encountered and fitness for the policy graph can be expressed.

Algorithm 2 Selecting an action through traversal of a policy graph. P is the current program population. tmi is
the current team (initially a root node). ~s is the state observation. V is the set of teams visited throughout this
traversal (initially empty). First, all programs in tmi are executed relative to the current state ~s (Lines 4,5). The
algorithm then considers each program in order of bid (highest to lowest, Line 7). If the program has an atomic
action, the action is returned (Line 8). Otherwise, if the program’s action points to a team that has not yet been
visited, the procedure is called recursively on that team. Thus, while a policy graph may contain cycles, they
are not followed during traversal. In order to ensure an atomic is always found, team variation operators are
constrained such that each team maintains at least one program that has an atomic action.

1: procedure SelectAction(tmi,~s, V)
2: A = {x ∈ P : x has atomic action}
3: V = V ∪ tmi . add tmi to visited teams
4: for all pi ∈ tmi do
5: bid(pi) = exec(pi,~s) . run prog. on~s and save result
6: tm′i = sort(tmi) . sort progs by bid, highest to lowest
7: for all pi ∈ tm′i do
8: if pi ∈ A then return action(pi) . atomic reached
9: else if action(pi) /∈ V then

10: return SelectAction(action(pi),~s, V) . edge

As multi-team policy graphs emerge, an increasingly tangled graph of connectivity develops between the team
and program populations. The number of unique solutions, or policy graphs, at any given generation is equal to
the number of root nodes (i.e. teams that are not referenced as any program’s action, for example t3 in Figure
2(b)) in the team population. Only these root teams are candidates to have their fitness evaluated, and are subject
to modification by the variation operators.

In each generation, PopGap of the root teams are deleted and replaced by offspring of the surviving roots.
The process for generating team offspring uniformly samples and clones a root team, then applies mutation-based
variation operators to the cloned team which remove, add, and mutate some of its programs (Parameterized in
Table 1). The team generation process introduces the same number of root nodes as were deleted. However,
the total number of root nodes after generating offspring fluctuates, as root teams (along with the lower policy
graph) are sometimes ‘subsumed’ by a new team. Conversely, graphs can be separated, for example through
program action mutation, resulting in new root nodes / policies. This implies that after initialization, both team
and program population size varies, and a balance is reached between the fraction of the team population that
become ‘archived’ as internal nodes (i.e. a library of reusable code) and the fraction that remain as root nodes1.

In summary, the critical idea behind TPG is that SBB [13] is extended to allow policy graphs to emerge,
defining the inter-relation between teams. As programs composing a team typically index different subsets of the
state space (i.e., the screen), the resulting policy graph will incrementally adapt, indexing more or less of the state
space and defining the types of decisions made in different regions.

1The fraction of root/internal nodes could be influenced by tuning the probability of program-action variation operators, i.e. atomic action
versus team pointer. Each occurs with equal probability in this study. Thus, the root/internal node ratio is entirely the result of environmental
interaction and selective pressure. While it is possible that all root nodes could be subsumed during evolution, it was not empirically observed.
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Table 1: Parameterization of Team and Program populations. For the team population, pmx denotes a mutation
operator in which: x ∈ {d, a} are the prob. of deleting or adding a program respectively; x ∈ {m, n} are the prob.
of creating a new program or changing the program action respectively. ω is the max initial team size. For the
program population, px denotes a mutation operator in which x ∈ {delete, add, mutate, swap} are the prob. for
deleting, adding, mutating, or reordering instructions within a program.

Team population
Parameter Value Parameter Value

PopSize 360 PopGap 50% of Root Teams
pmd, pma 0.7 ω 5

pmm 0.2 pmn 0.1
Program population

Parameter Value Parameter Value
numRegisters 8 maxProgSize 96

pdelete, padd 0.5 pmutate, pswap 1.0

5 Empirical Experiment

The capability of TPG will be investigated under the particularly challenging task of building multi-task agents for
Atari 2600 video games. Previous studies have established the ability of TPG to build game-specific controllers for
20 unique games [10]. Conversely, the goal of this work is to produce both game-specific and multi-task policies
from the same evolutionary run. For this initial multi-task experiment, we define two groups of games to be
learned simultaneously, each containing 3 games for which (game-specific) TPG policies matched or exceeded test
scores from DQN.

Other than previous success with learning each game individually, the two groupings are not based on any
intuition regarding multi-task compatibility. Game group A includes Centipede, Frostbite, and Ms. Pac-Man,
three games with no obvious commonalities. Centipede is a vertically oriented shooting game, Frostbite is an
adventure game in which the player must build an igloo by jumping on blocks of ice that float across the screen
horizontally, and Ms. Pac-Man is a maze task in which the player must navigate a series of mazes to collect pellets.
Game group B contains three games that may, at first glance, appear similar to one another. Specifically, group B
contains Asteroids, Battle Zone, and Zaxxon, all shooting games in which the player gains points by aiming and
firing a gun at on-screen targets. However, their similarities are relatively superficial, as each game title defines
its own graphical environment, colour scheme, physics, objective(s), and scoring scheme. Furthermore, joystick
actions are not necessarily correlated between game titles. For example, in Asteroids the ‘down’ action causes
the spaceship avatar to enter hyperspace, disappearing and reappearing at a random screen location. In Battle
Zone, the ‘down’ action causes the first-person tank avatar to reverse, and foreground targets shrink, appearing to
retreat into the distance. In Zaxxon, a third-person plane-flying / shooting game, the ’down’ action is interpreted
as ‘pull-up’, causing the plane to move vertically up the screen.

Having identified two diverse groups of games titles, the next section outlines the experimental setup designed
to test if both game-specific and multi-task policies, capable of playing all games in a given group, can emerge
from a single evolutionary run.

5.1 Experimental Setup

Five runs of TPG are conducted for 200 (300) generations in game group A (B). All runs use the same parameter-
ization, Table 1. In order to support the development of multi-task policies, environment switching is introduced
such that the population is exposed to different game titles over the course of evolution. Thus, for each consecutive
block of 10 generations, one game title is selected with uniform probability to be the active title. The same state
representation is used for all game titles (Section 3.1)2. Each policy graph is evaluated in 5 episodes per generation
under the active title, up to a lifetime maximum of 5 evaluations under each game title. Multiple evaluations in
each game are required in order to mitigate the effects of stochasticity in the environment. Thus, each policy stores
a historical record of up to 15 evaluations (5 in each of the 3 titles). However, a policy’s fitness in any given gen-
eration is its average score over 5 episodes in the active title only. Thus, selective pressure is only explicitly applied
relative to a single game title. However, stochastically switching the active title at regular intervals throughout

2Note that the state representation is simply a quantized screen capture. It does not include any state variables that explicitly identify
high-level game information such as the active game title or the location of the agent’s avatar
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evolution implies that a policy’s long-term survival is dependent on a level of competence in all games. Finally, to
facilitate the development of multi-task policies, the single best policy graph for each game title (i.e. that with the
highest mean score over 5 games) is protected from deletion, a simple form of elitism that ensures the population
as a whole never entirely ‘forgets’ any game.

5.2 Test Results

During training, the team and program populations are saved every 10 generations, or once for each block of
10 generations associated with the current active game title. Post training, the cached populations are reloaded
and all policies are tested in 30 episodes under each title as per established test conditions [15, 10]. This process
produces a set of test results from the entire population at intervals of 10 generations throughout evolution, from
which we can observe the single best scores achieved in each title, as well as the best multi-task policy score, i.e.
the single policy able to play all 3 games at the highest level of competence. A multi-objective performance metric
is used to identify the best multi-task policy from each test set post policy development.3

Pareto non-dominated policies, ~P, are identified relative to each game objective (mean test score in each game).
A policy pi is said to dominate another policy pj if pi is better than pj in at least one objective and no worse in all
others. From the set of non-dominated policies, pk ∈ ~P, choose a single multi-task champion, p∗k , as the policy
with the largest product over mean test scores from each game title, or p∗k = maxpk∈P( f 1(pk)× f 2(pk)× f 3(pk)) ,
where f 1(pk), f 2(pk), and f 3(pk) are the mean scores for policy pk in each of the 3 game titles.

Figure 3(a) plots incremental test results over all generations for each game group, where the Left-Hand-Side
(LHS) plot reports the best score achieved in each title by any policy, and the Right-Hand-Side (RHS) plot reports
the best multi-task policy scores. Scores are normalized relative to DQN’s score (from [15]) in the same game
(100%) and random play (0%). Normalized score is calculated as 100 × (TPG score - random play score)/(DQN
score - random play score)4. The random play score refers to the mean score achieved by an agent that simply
selects random actions at each time step (frame) [15].

The Group A experiment produces one game-specific policy for each game that ultimately exceeds the level of
DQN, LHS of Figure 3(a). Surprisingly, in the case of Frostbite and Centipede (LHS of Figure 3(a)), TPG began
with initial policies (i.e. generation 1, prior to any learning) that exceeded the level of DQN. In Centipede, this
initial policy was degenerate, selecting the ‘up-right-fire’ action in every frame, but nonetheless accumulating a
score of 12,890. While completely un-interesting, the strategy managed to exceed the test score of DQN (8,390)
[15] and the reported test score for a human professional video game tester (11,963) [15]. From this starting point,
the single best policy in Centipede improves throughout evolution to become more responsive and interesting;
maintaining the strategy of shooting from the far right while gaining the ability to avoid threats through vertical
and horizontal movement.

Likewise, the single best policy in Frostbite begins at a high level of play relative to DQN, and significantly
improves throughout evolution. Interestingly, the final champion policy in Frostbite defined a relatively long-term
strategy, which involved building an igloo by jumping on horizontally-moving ice bergs for an extended period
of play (≈ 1000 frames). When the igloo is complete, the agent promptly navigates to the entrance and enters the
igloo (a trajectory consuming ≈ 200 frames), advancing to the next level. A long-term strategy also emerges for
Ms. Pac-Man, in which the agent navigates directly to a power pill and eats it. Ghosts, which are normally threats
to Ms. Pac-Man, become temporarily edible after a power pill is eaten. Thus, after eating the pill, the Ms. Pac-Man
agent moves throughout the same section of maze, gaining points by eating ghosts.

From the group B experiment, the game-specific Asteroids policy begins at a high level of play relative to DQN,
while game-specific champions in Battle Zone and Zaxxon slowly emerge over the course of evolution (LHS of
Figure 3(b)).

In addition to discovering a single champion policy for each game title, a single multi-task policy also emerges
from both group A and group B experiments. The RHS of Figure 3 reports game scores for the best multi-task
policy from each test set, as identified by the multi-objective performance metric outlined in Section 5.1. Note
that the multi-objective metric is only applied post-training to identify the best multi-task policy. While no single
policy is initially capable of playing all three games at a level equivalent to DQN, a competent multi-task policy
emerges by generation ≈ 125 (Group A) and ≈ 250 (Group B).

Table 2 reports the final test scores for the best game-specific TPG policy in each game title (TPG-GS) and the
champion multi-task policy (TPG-MT). Note that in group A, all test scores reported for TPG exceed the level of

3Fitness at each generation is only relative to the current (single) game title.
4Normalizing scores makes it possible to plot TPG’s progress relative to all games together regardless of the scoring scheme in different

games, and facilitates making a direct comparison with DQN. All TPG and DQN scores were greater than random play, thus normalization
never produces a negative result.
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Figure 3: Post-training incremental test results. Once for each consecutive block of 10 generations (x-axis), all
policies are re-loaded from checkpoint files and tested in 30 episodes under each game title for a maximum of
18,000 frames each. The LHS plot reports the single-best mean test score achieved in each game by any policy (i.e.
the scores reported for each game at any point are from 3 different policies), while the RHS plot reports mean
scores for the best multi-task policy (see procedure in §5.1 (i.e. the scores reported for each game are from the
same policy). All scores are normalized relative to DQN’s score in the same game (100%) and a random agent
(0%). TPG scores are from the single best of 5 independent runs. DQN scores are from [15].
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play achieved by DQN [15] in the same games (p < 0.05 from two-tailed test). In group B, game-specific TPG
policies in Asteroids and Battle Zone exceed the level of DQN, while the remaining TPG scores simply match
scores from DQN in each game (i.e. there is no statistical difference, p > 0.05 from two-tailed test).

Table 2: Test results with game switching. The final population of TPG polices in each run are tested in 30 episodes
for each game title. TPG-GS reports the best mean test score for each game achieved by any policy (i.e. each score
is from a different specialist policy graph). TPG-MT reports the best mean score for each game from a single
generalist, multi-task policy graph. DQN reports test scores from [15], i.e. for policies trained and tested on a
single game title only.

Game TPG-GS TPG-MT DQN
Centipede 30689(±734) 14683(±1809) 8309(±5237)
Frostbite 3836(±243) 3092(±416) 328.3(±250.5)

Ms. Pac-Man 4127(±230) 3988 (±598) 2311(±525)
Asteroids 2389(±1044) 1431.4(±409) 1629(±542)

Battle Zone 40933.4(±9892) 23700(±7566) 26300 (±7725)
Zaxxon 4483.7(±1677) 4363.5(±1780) 4977(±1235)

Finally, in order to confirm the significance of game switching, we re-evaluate TPG policy graphs, as developed
and reported in a separate study [10], over all three games from group A and B, with the resulting test scores
shown in Table 3. Each policy in Table 3 was exposed to a single game titled during evolution (i.e. no game
switching takes place). In this case, no policy is able to achieve significant scores in any game other than the title it
experienced during training. Thus, within either of the groups considered in this study, proficiency in any single
game title does not directly transfer to any other game within the same group.

Table 3: Test results without game switching. The champion (game-specific) TPG policy for each game from [10]
is re-tested in 30 episodes under each game title and mean scores are reported. Column headings indicate which
game the policy was trained for, while rows indicate the active game under test. (i.e. Each policy was trained for
one game and has never seen the other two before).

Centipede Frostbite Ms. Pac-Man
Centipede 35264(±7886) 2191(±1464) 160(±0)
Frostbite 0(±0) 5358(±2962) 150(±21)

Ms. Pac-Man 60(±0) 210 (±0) 7920(±932)
Asteroids Battle Zone Zaxxon

Asteroids 2673(±625) 500(±900) 300(±180)
Battle Zone 407.3(±192) 40033.4(±5798) 0(±0)

Zaxxon 135.7(±29) 2900(±2203) 6050(±1867)

5.3 Simplicity Through Emergent Modularity

As discussed in Section 4, the simplest stand-alone decision-making entity in TPG is a single team of programs,
where all policies are initialized as a single-team of between 2 and ω programs. Throughout evolution, search
operators may incrementally combine teams to form policy graphs. By compartmentalizing decision-making over
multiple independent modules (teams), and incrementally combining modules into policy graphs, two critical
benefits are achieved:

Solution complexity: The number and complement of programs per team and teams per policy graph, is an
emergent, open-ended property driven by interaction with the task environment. That is, policies are initialized
in their simplest form and only complexify when/if simpler solutions are outperformed (see [10] for empirical
evidence of this property).

State space selectivity: Each program indexes a small proportion of the state space. As the the number of
teams and programs in each policy graph increases, the policy will index more of the state space and optimize
the decisions made in each region. However, recall form section 4.2 that a single decision, or mapping from state
observation to atomic action, requires traversing a single path from root node to atomic action. As such, while the
decision-making capacity of the policy graph expands through complexification, the cost of making each decision,
as measured by the number of programs which require execution, remains relatively low.
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Figure 4 quantifies these properties by examining, for the champion multi-task policy throughout evolution
from Group A (RHS of Figure 3(a)), the number of teams per policy vs. teams visited per decision (Figure 4(a)),
the proportion of input space covered by the policy as a whole vs. the proportion indexed per decision (Figure
4(b)), and the average number of instructions required for each decision (Figure 4(c)). Table 4 summarizes this
data for the champion multi-task policy from each game group. Thus, the ultimate run-time efficiency of policy
graphs is a factor of how many instructions are executed to make each decision. Interestingly, even for an evolved
multi-task policy graph (i.e post-training), the number of instructions executed depends on the game in play, for
example, ranging from 1064 in Ms. Pac-Man to 588 in Centipede for the Group A multi-task champion, Table 4.
For perspective, DQN performs millions of weight computations for each decision and defines the architecture a
priori, using the same level of complexity for each game.

Table 4: Complexity of champion multi-task policy graphs from each game group. The cost of making each
decision is relative to the average number of teams visited per decision (Teams), average number of instructions
executed per decision (Instructions), and proportion of state space indexed per decision (%state).

Game Teams Instructions %State
Centipede 3 588 17

Frostbite 4 844 24

Ms. Pac-Man 5 1064 29

Asteroids 5 999 27

Battle Zone 6 1211 31

Zaxxon 6 1244 32

5.4 Modular Task Decomposition

Problem decomposition takes place at two levels in TPG: 1) Program-level, in which individual programs within
a team each define a unique context for deploying a single action; and 2) Team-level, in which individual teams
within a policy graph each define a unique program complement, and therefore represent a unique mapping
from state observation to action. Moreover, since each program typically indexes only a small portion of the state
space, the resulting mapping will be sensitive to a specific region of the state space. This section examines how
modularity at the team level supports the development of multi-task policies.

As TPG policy graphs develop, they will subsume an increasing number of stand-alone decision-making mod-
ules (teams) into a hierarchical decision-making structure, or policy graph. The degree to which individual teams
specialize relative to each objective experienced during evolution, i.e. the 3 game titles, can be characterized by
looking at which teams contribute to decision making at least once during test, relative to each game title.

Figure 5 shows a multi-task TPG policy graph from generation 175 of the group A experiment. The Venn
diagram indicates which teams are visited at least once while playing each game, over all test episodes. Naturally,
the root team contributes to every decision (black circle in the graph, center of Venn diagram). 7 teams contribute
to playing both Ms. Pac-Man and Frostbite, while the rest of the teams specialize for a specific game title. In
short, both generalist and specialist teams appear within the same policy and collectively define a policy capable
of playing multiple game titles.

6 Conclusion

The simultaneous evolution of agent behaviours for multiple game titles is demonstrated under the Atari 2600

gaming environment. To do so, a new approach is proposed for providing emergent modularity in GP, or Tangled
Program Graphs (TPG). The resulting TPG solutions match or exceed current state-of-the-art from deep learning
(trained on single game titles), while not requiring any more training resource than necessary for developing
agent’s under a single game title. Moreover, TPG solutions are particularly elegant, thus supporting real-time
operation without specialized hardware.
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Figure 4: Complexity of champion multi-task policies identified from incremental tests (RHS of Group A, Figure
3). Reported are the number of teams per policy vs. teams visited per decision (a), the proportion of input
space covered by the policy as a whole vs. the proportion indexed per decision (b), and the average number of
instructions executed for each decision (c).
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reached (See Algorithm 2). Venn diagram indicates which teams are visited while playing each game, over all test
episodes. Note that only graph nodes (teams and programs) that contributed to decision-making during test are
shown.
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